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Abstract: We describe the application of a Neural Network (NN) previously developed by us, to
the detection and tracking, of Karenia brevis Harmful Algal Blooms (KB HABs) that plague the
coasts of the West Florida Shelf (WFS) using Visible Infrared Imaging Radiometer Suite (VIIRS)
satellite observations. Previous approaches for the detection of KB HABs in the WFS primarily used
observations from the Moderate Resolution Imaging Spectroradiometer Aqua (MODIS-A) satellite.
They depended on the remote sensing reflectance signal at the 678 nm chlorophyll fluorescence
band (Rrs678) needed for both the normalized fluorescence height (nFLH) and Red Band Difference
algorithms (RBD) currently used. VIIRS which has replaced MODIS-A, unfortunately does not
have a 678 nm fluorescence channel so we customized the NN approach to retrieve phytoplankton
absorption at 443 nm (aph443) using only Rrs measurements from existing VIIRS channels at 486,
551 and 671 nm. The aph443 values in these retrieved VIIRS images, can in turn be correlated
to chlorophyll-a concentrations [Chla] and KB cell counts. To retrieve KB values, the VIIRS NN
retrieved aph443 images are filtered by applying limiting constraints, defined by (i) low backscatter
at Rrs 551 nm and (ii) a minimum aph443 value known to be associated with KB HABs in the WFS.
The resulting filtered residual images, are then used to delineate and quantify the existing KB HABs.
Comparisons with KB HABs satellite retrievals obtained using other techniques, including nFLH, as
well as with in situ measurements reported over a four year period, confirm the viability of the NN
technique, when combined with the filtering constraints devised, for effective detection of KB HABs.

Keywords: neural networks; harmful algal blooms; ocean color remote sensing reflectance;
Karenia brevis; retrieved chlorophyll-a; normalized fluorescence height; West Florida Shelf

1. Introduction

A new approach is needed for the detection and tracking of KB HABs that frequently plague
the coasts and beaches of the West Florida Shelf (WFS) using VIIRS satellite data. Such a monitoring
capability for KB HABs is important because of their negative impacts on ecology and health.
More specifically, high KB HABs levels pose a threat to fisheries and human health, and directly affect
tourism and local economies [1]. Effective KB HABs detection and tracking approaches are needed for
use with VIIRS so that NOAA can extend its HABs monitoring capabilities, which previously relied on
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MODIS-A imagery [2–11]. Unfortunately, VIIRS, unlike its predecessor MODIS-A, does not have a
678 nm channel to detect chlorophyll fluorescence, which is used in the normalized fluorescence height
(nFLH) algorithm [7,8], or in the Red Band Difference (RBD) algorithm, developed by our CCNY
group [5,6]. Both of these techniques have demonstrated that the Rrs 678 nm from the MODIS-A
fluorescence band helps in effectively detecting and tracking KB HABs in the WFS [3–8]. To overcome
the lack of a fluorescence channel on VIIRS, the alternative approach described here, bypasses the need
for measurements of chlorophyll fluorescence, allowing us to extend KB HABs satellite monitoring
capabilities in the WFS to VIIRS.

The essence of the approach is the application of a standard multiband neural network
(NN) inversion algorithm, previously developed and reported by us [12–15], that takes VIIRS Rrs
measurements at the 486, 551 and 671 nm bands (or 488, 555, and 667 nm for MODIS-A) as inputs, and
produces as output the related Inherent Optical Properties (IOPs), namely: absorption coefficients of
phytoplankton (aph443) dissolved organic matter (ag) and non-algal particulates (adm) as well as the
particulate backscatter coefficient, (bbp) all at 443 nm. In this work, however, it is only with the NN
output of aph443 that we are concerned with and which can be converted to equivalent [Chla] using
empirical relationships for specific absorption in the WFS which have been determined from in situ
measurements [16]. For the next step, to obtain KB values from the VIIRS NN retrieved aph443 image,
we apply additional constraints, defined by (i) low backscatter manifested as a maximum Rrs551 value
and (ii) a minimum [Chla] threshold [4,17,18] (and hence an equivalent minimum aph443min value)
both known to be associated with KB HABs in the WFS. These two constraining filter processes are
applied sequentially to the VIIRS NN retrieved aph443 image. First an image is made of retrieved VIIRS
Rrs551. A mask is then made of all pixels with Rrs551 ě Rrs551max, the maximum value known to
be compatible with the existence KB HABs. This mask is then applied, in a filter process hereinafter
dubbed F1, to the VIIRS NN retrieved aph443 image to exclude pixels with Rrs551 ě Rrs551max.
The residual image, after application of filter process F1, will only show aph443 values that also comply
with Rrs551 ď Rrs551max. Then, in a second filter process, hereinafter dubbed F2, all values of
aph443 ď aph443min are eliminated. The residual image will now only show aph443 values that are
compatible with both criteria for KB HABs, and are therefore representative of KB HABs.

It will be shown that when both these filter condition are applied to VIIRS NN aph443 retrievals,
they can be used to effectively delineate and quantify KB HABs in the WFS. The KB HABs retrieved in
this manner also show good correlations with in situ KB HABs measurements as well as with nFLH
retrievals and other techniques to which the same filtering criteria have been applied, confirming the
viability of the approach.

2. Materials and Methods

Neural Network Algorithm Background

In the work presented here, we use our synthetically trained NN algorithm [12–15] to solve the
inverse problem [19,20] of retrieving physical variables, including aph443, from VIIRS observations of
Rrs at 486, 551 and 671 nm in the WFS. A brief background summary is given here. Additional details
are available in the cited references and in the Appendix. The latter also gives the necessary parameters
for using the NN with a MATLAB tool for satellite retrievals by any interested reader. As mentioned
in the introduction, we use a standard multiband NN inversion algorithm that takes VIIRS Rrs
measurements at the 486, 551 and 671 nm bands as inputs, and produces as outputs the related IOPs,
namely: aph443, ag and adm as well as bbp, all at 443 nm. (As mentioned earlier, it is only with the aph443

output of NN that we are concerned with here).

Synthetic Dataset

For development of the algorithm, available measurement data from the NASA Bio-Optical
Marine Algorithm Data set [21], (NOMAD) was used as a basis for establishing a range of possible
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IOP parameters and examining potential relationships between them. The full range of parameters,
applicable to both oceanic and coastal waters, and the relationships established between them were
used as inputs to a bio-optical model [14,22,23]. The range and variability of IOPs used in our
bio-optical modeling is well represented in the literature [22–35]. Our model, as illustrated in Figure 1a,
has four components: water, phytoplankton, colored dissolved organic matter (CDOM) and non-algal
particulates (NAP) as inputs to create a synthetic data base consisting of 20,000 IOP combinations
covering the entire observable range of possible IOP parameters. These IOPs were then used with
a HydroLight based [36], parameterized forward model, described in Lee 2002 [23] to generate
corresponding sets of Rrs values at 486, 551 and 671 nm for VIIRS, and at 488, 555 and 667 nm for
MODIS-A, associated with each of the 20,000 IOPs (and the related different combinations of the four
components) [12–15].
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Figure 1. (a) Flowchart of Bio-Optical model and the Forward Model simulations; (b) Architecture
of VIIRS NN, one-hidden layer multilayer perceptron (MLP), trained with 10,000 set of Rrs and
related IOPs.

Algorithm Training

Once the comprehensive set of Rrs spectral channel data together with the associated IOP’s are
assembled, a robust NN can be developed to connect the Rrs directly to the physical parameter to be
retrieved. As is standard, a subset of the data is used to train the underlying NN and the rest used for
validations. In our case, 50% (10,000) of these sets of Rrs and related IOPs were used [12–15] to train
the NN model to obtain the relationship between input Rrs values at the 486, 551 and 671 nm bands
for VIIRS and the output aph, ag, adm, bbp coefficients at 443 nm, which is at the peak of phytoplankton
absorption spectrum, and thus exhibits the most sensitive variation in natural waters (and where
ag and ad are mutually constrained through an empirically derived relationship based on a study of
NOMAD [21] values). Figure 1b shows the VIIRS NN Architecture used. In our implementation, it was
found that a one-hidden-layer multilayer perceptron (MLP-NN) with six neurons at the hidden layer
was able to model our problems well. Since this architecture appeared appropriate for our needs, we
did not further explore how this relationship might be improved by increasing the number of neurons
or layers.

The VIIRS NN algorithm was tested and evaluated using multiple experiments. It was (a) tested
initially on half the simulated data set that was not used in the training (b) field data from the,
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(NOMAD) and (c) data from our own field campaign in the Chesapeake Bay during 2013, which
represents well the typical range of water optical properties and chlorophyll-a concentrations in
coastal regions. These tests confirmed good retrievals of aph443 by the NN [13,14] and provided strong
motivation for its use in the current work. The results of the present work have further confirmed its
viability for effective retrievals of aph443 in the coastal waters of the WFS from VIIRS measurements
at the 486, 551 and 671 nm bands. In this context, we would also add that though we are estimating
aph443 at 443 nm, the Rrs values used as inputs to the NN to retrieve it are at longer wavelengths, 486,
551 and 671 nm, and do not require measurements at the shorter wavelength channels, M1 (415 nm)
and M2 (443 nm) which are typically most impacted by atmospheric correction difficulties.

As mentioned above, a more detailed description of the NN, and its background are given in
the Appendix. The parameters needed for its implementation and the retrieval aph443 from inputs of
Rrs 486, 551 and 671 nm. The related calculations that can be readily performed by interested readers
using a MATLAB script are also described in the Appendix. We would be interested to hear the results
of other retrievals, particularly for other areas where KB HABs are known to exist.

3. Results and Discussion

3.1. VIIRS Retrievals of Rrs551 and aph443 and Determination of Limiting Values of Rrs551max and
aph443min in a KB Bloom Environment

Figure 2 shows KB cell counts associated with a prominent KB HAB bloom in the WFS with its
peak occurring around 2 September 2014. This bloom has been extensively studied [7,8,15]. Figure 2,
from the NOAA HABSOS site [37] shows the bloom area with indicators (circles of different sizes) for
KB HABs cell counts for concurrent or near concurrent dates over the period (27 August–17 September
2014). Figure 3a shows VIIRS retrievals of Rrs551 for 2 September 2014 and for the same location.
It shows, overlaid, the cell count information from Figure 2. Considering backscatter data as a KB
indicator, Refs. [3,17,18] give maximum permissible values of backscatter, compatible with KB HABs,
as bbp550 ď 0.0045 m2¨mg´1 at 550 nm. In addition, for Rrs 551 which is taken to serve as a proxy for
backscatter, the equivalent max permissible value is Rrs551 ď 7.0 ˆ 10´3 sr´1. However, by inspection
of Figure 3a of retrieved [38] and in situ [37] values we concluded that a value of approximately
Rrs551 ď 6.0 ˆ 10´3 sr´1 appears more appropriate as the highest permissible limiting value for
compatibility with KB HABs. If that value is applied to Figure 3a, as filter process F1, all pixels with
Rrs551 ě 6.0 ˆ 10´3 sr´1 are screened out, leaving the residual pixels in Figure 3b as compatible with
KB HABs as far as backscatter is concerned.
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Figure 3. (a) VIIRS Rrs551 image; (b) Residual Rrs551 image after F1 mask (dark grey) is applied
showing residual {Rrs551 ď 0.006 sr´1}. Note that these images are overlaid with NOAA-HABSOS KB
Cell Counts, from Figure 2 above. White areas represent cloud cover or invalid data.

We next apply the pixel mask shown in Figure 3b, resulting from application of Filter 1 conditions
to VIIRS Rrs551 retrievals, to Figure 4a which shows aph443 retrieved by the NN for the same
2 September 2014 date and location. This process eliminates all aph443 values in Figure 4a that do not
satisfy Rrs551 ď 6.0 ˆ 10´3 sr´1 requirements for compatibility with KB HABs. The residual values,
shown in Figure 3b satisfy the Rrs551 limit requirements. Cell counts from Figure 2 are again shown
overlaid in Figure 4b.

We next examine the appropriate F2 filter values for minimum aph443 consistent with KB HABs.
Now Refs. [17,18] give the minimum [Chla] concentration compatible with KB HABs in the WFS as
[Chla] ě 1.5 µg¨L´1. This is converted into equivalent aph443 using the empirical relationship [16]:

aph443 “ 0.051ˆ rChlas0.74 , m´1 (1)

Which gives aph443 ě 0.0688 m´3 as the minimum permissible value. Again, by inspection of
Figure 4b against overlaid in situ values, we conclude that a value of approximately aph443 ě 0.061 m´3

is more appropriate as the limiting value for compatibility with KB HABs.
Applying this value as Filter F2 to Figure 4b we eliminate pixels that are not compatible with KB

and end up with Figure 5a. This shows only residual values with aph443 ě 0.061 m´3 which also satisfy
Rrs551 < 6.0 ˆ 10´3 sr´1. These are therefore residual values compatible with and representative of KB
HABs. Comparison of the residual aph443 (left hand scale) and equivalent [Chla] (right hand scale) in
Figure 5a, which represent the retrieved KB HABs values, show good qualitative agreement with the
KB HABs cell counts in Figure 2.
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Figure 5. (a) Shows VIIRS retrieved NN aph443 (left hand scale) and equiv. [Chla] (right hand scale)
after filter process masks F1 and F2 are applied. These residual values are therefore compatible with
and show the extent of the KB blooms; (b) MODIS-A NN retrieved aph443 (left hand scale) and equiv.
[Chla] (right hand scale) after filter process masks F1 and F2 are applied. Residual values are therefore
compatible with and indicate KB blooms. Dark gray represents F1&F2 masks and white represents
cloud cover or invalid data.

3.2. Comparisons of NN KB HABs with Other Retrieval Techniques

We next compare the NN retrievals of KB HABs, described in the last section, with retrievals
using other techniques. In doing so, it is not the intention to present an exhaustive comparison of the
many approaches that have been studied for the detection of KB HABs in the WFS. Some of these are
listed in [2–11]. For more details, the reader is referred to recent excellent surveys and comparisons
in [3,11]. We focus here, instead, on comparisons with three distinct categories of retrieval techniques.
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The existing satellite algorithms that are relevant to the detection of KB HABs in the WFS rely
on retrieved chlorophyll-a concentrations [Chla] as part of their processing. They retrieve it primarily
in one of three ways: (i) using the remote sensing reflectance fluorescence signal at Rrs678 measured
by the MODIS-A satellite; and (ii) using blue-green ratio algorithms, exemplified by the NASA OC3
and OCI products [21,39–41]; and (iii) a more recent WFS region specific empirical algorithm, the Red
Green chlorophyll-a Index (RGCI) which retrieves [Chla] using 2 visible VIIRS or MODIS-A bands [42].
Those methods (i) using the 678 nm fluorescence signal, include the normalized fluorescence height
(nFLH) [2–11] and Red Band Difference (RBD) techniques [5,6]. (nFLH is FLH normalized to solar
radiance); Those methods (ii) using blue-green ratio algorithms, include the chlorophyll-a anomaly
technique and related approaches [43–52]. The method using RGCI, has been modified very recently,
and has been reported for [Chla] retrievals but has not yet been applied to KB retrievals [42].

Amongst the various available KB HABs retrieval techniques that have been comprehensively
evaluated, nFLH and RBD exhibited the best KB HABs retrieval statistics [3] for the WFS.
Accordingly, our paper focuses on comparisons of NN retrievals against retrievals using (i) nFLH/RBD
fluorescence and (ii) OCI/OC3 approaches; and (iii) RGCI approaches. These are each described in
Sections 3.2.1–3.2.4 respectively, with detailed descriptions available in references [2–11,42–53].

3.2.1. Comparison of NN KB HABs Retrieval Techniques with Those Using the Normalized
Fluorescence Height (nFLH) and Red Band Difference (RBD) Techniques

Both nFLH and RBD techniques use the magnitude of Rrs at the 678 nm fluorescence band relative
to the values at adjacent bands on MODIS-A to detect the chlorophyll fluorescence [54] and [Chla] [55].
This approach, when coupled with the known low backscatter properties of KB, has been shown to
help in effectively detecting KB in the WFS [3,17,18].

Since the nFLH technique requires the fluorescence signal at 678 nm, which is absent from VIIRS,
comparisons of nFLH with the NN technique must be made using MODIS-A neural network retrievals.
For this purpose, the same approach used with VIIRS NN (above) is used to obtain MODIS-A NN
aph443 retrievals. For MODIS-A, the Rrs values at the 488, 555 and 667 nm bands are used as inputs to
the NN. For application of the F1 filter process, Rrs 555 nm is used as the proxy for backscatter (instead
of the Rrs 551 nm used with VIIRS). The same F1 and F2 filter processes, with the same limiting values
of Rrs555 ď 6.0 ˆ 10´3 sr´1 for F1, and aph443 ě 0.061 m´3 for F2, were applied to MODIS-A NN
retrievals for the same 2 September 2014 bloom date, to obtain KB compatible residual retrieval values.
Figure 5b shows the MODIS-A NN retrieved aph443 (left hand scale) and the equivalent [Chla] (right
hand scale), after application of F1 and F2 filters. As can be seen, Figure 5b shows good qualitative
agreement with Figure 5a from VIIRS NN retrievals.

We next compare the nFLH NASA product available [54] with MODIS-A for retrievals of nFLH
values for the same 2 September 2014 WFS bloom. nFLH uses the height of the Rrs 678 nm (over a
baseline connecting adjacent Rrs values) as an indicator of chlorophyll fluorescence magnitude [54,55].
Retrieved values are shown in Figure 6a. The left hand scale shows the nFLH NASA product, while
the right hand scale shows the equivalent [Chla] value, converted using the empirical relationship [7]:

rChlas “ 1.255ˆ pFLHˆ 10q0.86, µgL´1 (2)

Figure 6b shows the same nFLH retrievals, but with filters F1 and F2 applied, i.e., with the same
pixels filtered out as in the MODIS-A NN retrievals in Figure 5b. It can be seen that Figure 6b shows
good qualitative agreement with the images of Figure 5a,b.

For more quantitative comparisons, Figure 7a shows the correlation between equivalent [Chla]
derived from nFLH in Figure 6a, against the retrieved MODIS-A NN derived equivalent [Chla].
To avoid complications from more complex waters in-shore areas, the comparison is made for the
off-shore area A, shown demarcated in Figure 6a,b above. Without the KB compatibility filters applied,
a high correlation, R2 = 0.87 is obtained. With the F1 and F2 filters applied (eliminating non KB
compatible pixels) the correlation becomes R2 = 0.71, Figure 7b. The color coding of the dots in
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Figure 7a,b indicates distance from shore, with red being the closest. As can be seen the spread gets
larger closer to the shore, where waters are more complex and the uncertainty increases.Remote Sens. 2016, 8, 377 8 of 25 
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When the comparison between nFLH and VIIRS NN retrieved [Chla] is expanded beyond area A
to include all areas, including the more complex in-shore waters, the correlation between them drops
drastically, to R2 = 0.19, shown in Figure 8. This may be due to the poor retrievals associated with
nFLH for in-shore areas, where increased backscatter can cause an apparent increase in the red-near
infrared spectral peak, increasing the apparent nFLH chlorophyll fluorescence signal, but which is in
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fact only partially associated with the fluorescence peak [3,53,55,56]. Additional comparisons of nFLH
and VIIRS NN in-shore retrievals are needed before more definitive conclusions can be arrived at.
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We also compared the NN retrievals from VIIRS with retrievals using the OCI/OC3 indexes, 
both NASA products [53] for the same 2 September 2014 bloom. OCI and the related OC3 NASA 
products are [Chla] retrieval algorithms that make use of the ratio of blue/green bands in the MODIS-
A and VIIRS satellites [21,39–41], and were found to yield exactly the same retrievals for our WFS 
conditions. 

Figure 8. Retrieved MODIS-A nFLH [Chla] against retrieved MODIS-A NN [Chla], not restricted to
open ocean area A, and includes in-shore areas. Color coding of the dots denotes distance to shore,
with red being the closest. Note that color bar is in log scale.

3.2.2. Comparisons of MODIS-A NN Retrievals with Red Band Difference (RBD) Index Retrievals

We also examined retrievals from MODIS-A using the RBD index which is an empirical index
previously developed by our CCNY group [5,6] often used in conjunction with the nFLH technique to
confirm presence of KB blooms. The RBD index is defined by:

RBD “ nLwp678q ´ nLwp667q, W¨m´2¨µm¨ sr´1

Figure 9 shows the RBD index, as defined above, retrieved from MODIS-A observations for the
2 September 2014 bloom, with filters F1 and F2 applied. As can be seen, this shows good qualitative
agreement with both nFLH, MODIS-A NN [Chla], and HABSOS in situ images, Figures 2, 5b and 6b.
As mentioned above, RBD, along with nFLH, has exhibited the best statistics for KB HABs retrievals [3].
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3.2.3. Comparisons of VIIRS NN Retrievals with VIIRS Ocean Color Chlorophyll-a
(OCI/OC3) Retrievals

We also compared the NN retrievals from VIIRS with retrievals using the OCI/OC3 indexes, both
NASA products [53] for the same 2 September 2014 bloom. OCI and the related OC3 NASA products
are [Chla] retrieval algorithms that make use of the ratio of blue/green bands in the MODIS-A and
VIIRS satellites [21,39–41], and were found to yield exactly the same retrievals for our WFS conditions.

Correlations between VIIRS OCI/OC3 [Chla] and VIIRS NN equivalent [Chla] retrievals are shown
in Figure 10a for the 2 September 2014 bloom for the off-shore area A. Without filter applications,
R2 = 0.9. When filters F1 and F2 are applied, the residual values consistent with KB HABs show,
Figure 10b, a correlation of R2 =0.78. Figure 10c shows a comparison for area A of nFLH equivalent
[Chla] retrievals against OCI/OC3 [Chla] retrievals with an R2 =0.75 without filters. Figure 10d shows
R2 = 0.50 with filters F1 and F2 applied, considerably lower than the correlation R2 =0.71, Figure 7b,
between nFLH equivalent [Chla] versus NN equivalent [Chla].
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more complex in-shore waters with increased backscatter [3,21,39–41,53,56]. 

3.2.4. Comparisons of VIIRS NN Retrievals with Red/Green Chlorophyll-a Index (RGCI) Retrievals 

We next examine RGCI [Chla] retrievals for the same 2 September 2014 date and locations as in 
the above Sections. Equation (3a) below gives the relationship for RGCI MODIS-A [Chla] retrievals, 
and Equation (3b) that for RGCI VIIRS [Chla] retrievals [42]. 

Figure 10. (a) Retrieved VIIRS OCI/OC3 [Chla] against retrieved MODIS-A NN [Chla]; (b) Same
retrieval as 10a with Filters F1 and F2 applied; (c) Retrieved OCI/OC3 [Chla] against MODIS-A nFLH
equiv. [Chla]; (d) Same as 10c but with filter F1 & F2 applied. The vertical line shows the NN [Chla] KB
threshold (F2 mask) consistent with the existence of KB, residual pixels of F1 and F2 masks satisfy both
maximum backscatter and minimum NN [Chla] and represent values for KB blooms. Color coding of
the dots denotes distance to shore, with red being the closest.

Again, when the comparison between OCI/OC3 and MODIS-A NN retrieved [Chla] is expanded
beyond area A to include all areas, including the more complex in-shore waters, the correlation between
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them drops drastically, to R2 = 0.07 (not shown) from the R2 = 0.75 in Figure 10c for the off-shore
area A. This may be due to the poorer retrievals associated with both nFLH and OCI/OC3 for more
complex in-shore waters with increased backscatter [3,21,39–41,53,56].

3.2.4. Comparisons of VIIRS NN Retrievals with Red/Green Chlorophyll-a Index (RGCI) Retrievals

We next examine RGCI [Chla] retrievals for the same 2 September 2014 date and locations as in
the above Sections. Equation (3a) below gives the relationship for RGCI MODIS-A [Chla] retrievals,
and Equation (3b) that for RGCI VIIRS [Chla] retrievals [42].

rChlasRGCI “ 0.1ˆ exp
ˆ

11.8ˆ
Rrs667
Rrs547

˙

,µg L´1 (3a)

rChlasRGCI “ 0.1ˆ exp
ˆ

11.8ˆ
Rrs671
Rrs551

˙

,µg L´1 (3b)

We first compare VIIRS RGCI [Chla] retrievals against VIIRS NN [Chla] retrievals. Figure 11a shows
a correlation of R2 = 0.72 for open ocean area A. This drops to R2 = 0.49 when filters F1 and F2 are
applied, Figure 11b. This compares with R2 = 0.9 and R2 = 0.78 for the equivalent comparisons between
OCI/OC3 and VIIRS NN [Chla].

Remote Sens. 2016, 8, 377 11 of 25 

 

-1
RGCI

667[ ]  = 0.1 exp 11.8    , μg L
547

RrsChla
Rrs

 × × 
 

 (3a) 

-1
RGCI

671[ ]  = 0.1 exp 11.8    , μg L
551

RrsChla
Rrs

 × × 
 

 (3b) 

We first compare VIIRS RGCI [Chla] retrievals against VIIRS NN [Chla] retrievals. Figure 11a 
shows a correlation of R2 = 0.72 for open ocean area A. This drops to R2 = 0.49 when filters F1 and F2 
are applied, Figure 11b. This compares with R2 = 0.9 and R2 = 0.78 for the equivalent comparisons 
between OCI/OC3 and VIIRS NN [Chla]. 

 
Figure 11. (a) Retrieved VIIRS RGCI [Chla] against retrieved VIIRS NN [Chla]; (b) Same retrieval as 
11a with Filters F1 and F2 applied; (c) Retrieved RGCI [Chla] against MODIS-A nFLH equiv. [Chla]; 
(d) Same as 11c but with filter F1 & F2 applied. The vertical line shows the NN [Chla] KB threshold 
(F2 mask) Color coding of the dots denotes distance to shore, with red being the closest. 

We next compare RGCI [Chla] against nFLH MODIS-A [Chla] retrievals. We see that for the same 
off shore area A, Figure 11c, R2 = 0.72. This is lower than the R2 = 0.87 obtained for the equivalent 
comparison of nFLH against MODIS-A NN [Chla] retrievals, Figure 7a, above. When the comparison 
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Figure 11. (a) Retrieved VIIRS RGCI [Chla] against retrieved VIIRS NN [Chla]; (b) Same retrieval as
11a with Filters F1 and F2 applied; (c) Retrieved RGCI [Chla] against MODIS-A nFLH equiv. [Chla];
(d) Same as 11c but with filter F1 & F2 applied. The vertical line shows the NN [Chla] KB threshold (F2
mask) Color coding of the dots denotes distance to shore, with red being the closest.
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We next compare RGCI [Chla] against nFLH MODIS-A [Chla] retrievals. We see that for the same
off shore area A, Figure 11c, R2 = 0.72. This is lower than the R2 = 0.87 obtained for the equivalent
comparison of nFLH against MODIS-A NN [Chla] retrievals, Figure 7a, above. When the comparison
is not restricted to the off-shore areas, the correlation for RGCI-nFLH drops off completely to R2 = 0.0
(not shown) compared to the previously given equivalent correlations for nFLH-MODIS-A NN of
R2 = 0.19, Figure 8 and R2 = 0.07 for OCI/OC3 (not shown).

When the F1 and F2 filtering procedures are applied to the RGCI [Chla] retrievals, for area A, the
correlation against nFLH MODIS-A [Chla] retrievals drops to R2 = 0.50, Figure 11d. This compares to
R2 = 0.71 and R2 = 0.50 for the equivalent correlations, shown previously, between nFLH and MODIS-A
NN and MODIS-A OCI/OC3 respectively.

The salient points of Sections 3.2.1–3.2.4 show that in open ocean area A, nFLH [Chla] retrievals
from MODIS-A are well correlated with MODIS-A NN [Chla] retrievals R2 = 0.87, less so with
equivalent MODIS-A OCI/OC3 with R2 = 0.75, and MODIS-A RGCI with R2 = 0.72. All correlations
drop when filters F1 and F2 are applied to obtain KB HABs retrievals to R2 = 0.71, R2 = 0.5 and
R2 = 0.5, respectively. For comparisons not restricted to the off-shore area A, all correlations with nFLH
MODIS-A [Chla] retrievals drop off drastically to R2 = 0.19, R2 = 0.07 and R2 = 0.0 for MODIS-A NN,
MODIS-A OCI/OC3 and RGCI respectively. It should also be noted that all four retrieval techniques
compared show qualitatively similar KB HABs retrieval images of the type shown in Figures 5a,b, 6b,
and 9 (not shown for OCI/OC3 and RGCI).

3.3. Comparisons of VIIRS NN, OCI/OC3 and RGCI Retrievals with in Situ Cell Count Measurements

3.3.1. Evaluation of VIIRS KB HABs Retrievals against in Situ Measurement for Match-Ups Occurring
over 2012–2015 Period

The ultimate test for the viability of KB HABs satellite retrieval techniques is their ability to match
retrieved values with concurrent in situ measurements.

It is, however, difficult to find on any one day suffient matches between satellite observations
between concurrent, or near concurrent in situ measurements to obtain statistically meaningful results,
We therefore extended the study period to look at all available WFS match-ups, Figure 12, between
VIIRS measurements and in situ data at concurrent dates and over the 2012–2015 period for which
there was available VIIRS data. The conditions for match-up were: (1) pixel centers were 0.3 miles
or less from the in situ measurement location; pixels are excluded from the match-up comparison if
they had been flagged for land, cloud, failure in atmospheric correction, stray light, bad navigation
quality, both high and moderate glint, negative Rayleigh corrected radiance, viewing angle greater
than 60, and solar zenith larger than 70, and any pixels which has water leaving radiance spectra with
negative values in any one of its wavelengths. Cell counts sample measurements also had to be at less
than 1 meter depth, and at concentrations ě104 cells¨L´1

. It should be noted that [Chla] of 1 µg¨L´1 is
~105 cells¨L´1 [49].

The in situ cell count data was obtained from the Florida Fish and Wildlife Conservation
Commission’s Fish and Wildlife Research Institute (FWC-FWRI). The search for match-up between
VIIRS satellite and in situ observations on the same day showed 94 cases which satisfied the match-up
conditions specified above. Figure 13a, above, shows the relationship between NN retrieved aph443

and the in situ KB cell measurements for these 94 cases. This shows a correlation with R2 = 0.32.
Converting the aph443 [16] to equivalent [Chla] for these same 94 cases, shows, in Figure 13b, the same
correlation against KB cell counts, with R2 = 0.32 for both these match-ups. Figure 13c,d, show the
equivalent match-up for the same 94 points for retrieved OCI/OC3 and RGCI [Chla] against in situ KB
cell counts, which shows lower correlations with R2 = 0.28 and R2 = 0.17 respectively.
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Figure 13. In situ observation within the same day of VIIRS image: (a) VIIRS NN retrieved aph443

against in situ KB cell counts; (b) VIIRS NN equiv. [Chla] against in situ cell counts; (c) VIIRS OCI/OC3
retrieved [Chla] against in situ KB cell counts; (d) VIIRS RGCI retrieved [Chla] against in situ KB cell
counts. Color coding of the dots denotes distance to shore, with blue being the closest.
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Now, it is recognized that temporal variations due to bloom drift etc. between satellite observation
and in situ measurement times can affect these results. Accordingly, the results were separated in
accordance with observation time windows. Those occurring with less than 1 h, and 0.5 h between
satellite and in situ observations are shown separately. Figure 14a (1 h), b (0.5 h) show the match-ups
between VIIRS NN retrieved equivalent [Chla] against KB cell counts. The equivalent values for
OCI/OC3 and RGCI [Chla] retrievals are shown in Figure 14c–f respectively. For the 1 h window,
Figure 14a, the correlation for the NN retrievals increases from the daily R2 = 0.32 to R2 = 0.69.
For OCI/OC3 retrievals, it increases from R2 = 0.28 to R2 = 0.33. For RGCI it increases from R2 = 0.17
to R2 = 0.62. For the 0.5 h window, the correlations increase to R2 = 0.82, R2 = 0.44 and R2 = 0.7
respectively. With the NN being the highest, closely followed by RGCI, then OCI/OC3, though the
average errors appear to be twice as high for RGCI as compared with NN.

 

Figure 14. (a–f) Retrieved NN equiv. [Chla] and OCI/OC3 [Chla] and RGCI [Chla] against in situ cell
counts for 1 h and 30 min observation time windows. Note that the vertical color bar is indicates distant
(mi) from coastline with red being closest to shore.
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Thus, it is seen that reducing the time window between satellite and in situ observations can
generally significantly increase the correlation between VIIRS retrieved [Chla] and KB cell counts.
More area specific studies need to be carried out before definitive conclusions can be drawn.

We also use the above match-ups to assess the validity of the F1 and F2 filter limits for
Rrs551 ď 6.0 ˆ 10´3 sr´1 and aph443 ě 0.061 m´3 defined in Section 3.1 above. Figure 15 shows
that for the NN retrieved aph443 match-ups falling within the ½ h window, which were retrieved
without any filter constraints being applied on Rrs551 and aph443 all but two of them fall within these
limits. Further refinements on these limiting filter values as a means of retrieving KB HABs will
require planned future statistical analysis of false positives and negatives in retrieval results against
in situ measurements.
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Table 1. VIIRS, MODIS-A comparisons and in situ results.

y-axis x-axis R2 Slope & Intercept ε N

OCI/OC3 [Chla] (µg¨L´1)
VIIRS NN-[Chla] (µg¨L´1)

0.90 y “ 0.96 x`0.22 0.33 5755
RGCI [Chla] (µg¨L´1) 0.72 y “ 1.50 x´0.22 0.95 5755

nFLH [Chla]-KB
(W¨m´2¨ µm´1¨ sr´1) MODIS

0.71 y “ 0.80 x`0.36 0.43 2274
OCI/OC3 [Chla] (µg¨L´1) 0.50 y “ 0.48 x`0.70 0.57 2274

RGCI [Chla] (µg¨L´1) 0.50 y “ 0.55 x`0.98 0.57 2274

NN [Chla] (µg¨L´1)

In situ
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3.3.2. Evaluation of NN KB HABs Retrievals for Specific Bloom Events

We also compared the ability of NN KB HABs retrievals against in situ KB HABs measurements
for specific algal blooms. We apply filter processes F1 and F2 above to VIIRS NN aph443 retrievals
to arrive at KB compatible values, in Figures 16 and 17a,b for three bloom dates: 28 August 2014,
16 November 2014 and 9 October 2012. The residual aph443 (left hand scale) and equivalent [Chla] values
(right hand scale) are those compatible with KB HABs. Figure 16 shows the retrievals for the 8 August
2014, bloom now overlaid with actual KB cell counts for that date only (not for a range of overlapping
dates as was used previously). There are a total of 20 match-ups on that day. There appears to be
one false positive, indicated by the arrow. This presents an ambiguous situation, since it is near the
edge of the bloom and changes may have occurred in the time window between in situ and satellite
measurement, and secondly, while there is no in situ bloom measured at the surface at that date,
there was one below the surface at nearly the same location, bringing into play the possibility of
sub-pixel variations, indistinguishable when pixel averaging takes place. Figure 17a shows a bloom on
16 November 2014, near the coast, with a total of 6 match-ups. There are no false positives or negatives
in this retrieval. This is particularly interesting since it is close to the coast, and therefore in more
complex waters. Figure 17b shows a bloom on 9 October 2012, with 12 match-ups. It covers both near
and offshore areas and has no false positives or negatives.
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4. Summary and Conclusions

Detection of KB HABs in the WFS have been aided in the past by use of the 678 nm MODIS-A
fluorescence band for retrievals using nFLH and RBD techniques. The lack of a fluorescence channel
on the successor VIIRS satellite provided the impetus for the NN work reported here. In this approach,
NN algorithms using Rrs values from the 486, 551 and 671 nm VIIRS bands are used to retrieve an
image of aph443 values in the WFS. Then, as detailed above, the additional limiting constraints are
applied, in two filter processes, F1 and F2 to eliminate from that image all aph443 pixels which are not
compatible with the existence of KB HABs. These limiting criteria are defined by (i) low backscatter
manifested as a maximum VIIRS Rrs551max value [3,17,18] and (ii) the minimum [Chla] and hence
equivalent minimum (aph443) values that are known to be associated with KB HABs in the WFS. Thus,
through the implementation of filter processes F1 and F2, all pixels in the VIIRS NN retrieved aph443

image that are incompatible with KB HABs are eliminated. The residual image then shows only
retrieved aph443 values and their equivalent [Chla] values that are consistent with the existence of
KB HABs. The specific limiting values for maximum Rrs551 and minimum aph443 used in the filter
processes were based on published data, reinforced and refined by inspections of retrieval results
against available in situ data. The retrieved values of aph443 and equivalent [Chla] retrieved using these
filter limits, were then compared both qualitatively and quantitatively both against other satellite
retrieval techniques and in situ measurements.

Comparisons of the NN technique were made first with the nFLH and RBD techniques, which, in
reported comprehensive tests [3] exhibited the best statistics for KB HABs retrievals in the WFS from
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MODIS-A. Our comparisons showed good correlations between nFLH and the NN retrievals for open
ocean waters. However, KB retrieval capabilities with the nFLH technique are severely limited for
in-shore retrievals, where the more complex waters with increased non-algal particulate scattering
interfere with the fluorescence signal making its interpretation more difficult [56]. Comparisons were
also made between the NN technique and retrievals using OCI/OC3 and the RGCI for [Chla] retrievals.
Again, these comparisons showed reasonably correlations in open ocean waters, but confirmed
difficulties with retrievals in more complex inshore waters. Further work is also needed on our NN KB
retrieval technique before we can properly evaluate its capabilities for in-shore retrieval and compare
them more rigorously with those of MODIS-A nFLH, OCI/OC3 and RGCI.

Finally, the critical test for the viability of KB HABs satellite retrieval techniques is the comparison
of their ability to match retrieved values with concurrent in situ measurements. We therefore sought to
extend the range of available in situ comparisons. This was done by seeking all available match-ups
between VIIRS NN aph443 (and equivalent [Chla] retrievals) and in situ KB cell count measurements for
the period 2012–2015. These comparisons showed that when the window between in situ observations
and satellite measurements was reduced from daily, to 1 h and 0.5 h, the correlations greatly improved
for the VIIRS NN and VIIRS RGCI retrievals against in situ match-ups. These showed respectable
R2 = 0.82 and R2 = 0.70 respectively for the 0.5 h window. The comparisons also supported the choice of
values for the F1 and F2 filter processes. Comparisons were also made comparing VIIRS NN retrievals
identifying KB HABs, and in situ KB cell counts measured on the same date for 3 specific bloom events.
All three confirmed the viability of the VIIRS NN retrieval approach, with no apparent false negatives
or positives. Comparisons with other NN retrieval techniques are not so straightforward. Several of
the previously reported NN techniques have used in situ measurements of IOPs, including sea surface
temperatures and other physical parameters as inputs to NNs for bloom prediction, apparently with
some success [57–59]. The more directly comparable NN technique reported, is the NN algorithm
product for [Chla] retrievals in Case 2 waters [60–63] from the MERIS satellite, which is no longer
operational. This appears to give comparable results, in European waters, to OCI/OC3 retrievals in
open waters, and possibly higher accuracies in coastal waters [61]. This MERIS algorithm does not
appear to have been tested for KB retrievals in the WFS. Tests of historical data for such retrievals may
yield interesting results.

In conclusion, results to date with the VIIRS NN technique appear promising. However, more
match-ups, including more detailed considerations of observation times and their connections to false
positives or negatives, sample depths, distance to observation pixel centers and sub-pixel variability
and impact of complex in-shore waters need to be studied. More comprehensive statistics need to be
obtained on the overall efficacy of the approach and its comparisons to other techniques.
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Abbreviations

The following abbreviations are used in this manuscript:

KB Karenia brevis
HABs Harmful algal blooms
WFS West Florida Shelf
VIIRS Visible Infrared Imaging Radiometer Suite
MODIS-A Moderate Resolution Imaging Spectroradiometer Aqua
MERIS MEdium Resolution Imaging Spectrometer
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aph Absorption coefficient due to phytoplankton particulates (m´1)

adg
Absorption coefficient due to non-phytoplankton particulates and dissolved substances,
adm + ag (m´1)

adm Absorption coefficient due to non-phytoplankton particulates (m´1)
aw: Absorption coefficient due to water (m´1)
at Total absorption coefficient, aph + adm + ag + aw (m´1)
bbp Backscattering coefficient due to particulates (m´1)
bbw Backscattering coefficient due to water (m´1)
bb Total backscattering coefficient, bbp + bbw (m´1)
[Chla] Chlorophyll-a concentration (µg¨L´1)
CDOM Color dissolved organic matter (ppm)
NAP Non-phytoplankton particulate concentration (g¨m´3)
AOP Apparent optical properties
IOP Inherent Optical properties
RT Radiative transfer
Rrs Above-surface remote-sensing reflectance (sr´1)
nLw Normalized water leaving radiance (W¨m´2¨ µm¨ sr´1)
MLPNN Multi Layer perceptron neural network
NN Neural network
NN [Chla] NN deriving [Chla] from Rrs as inputs
NOMAD NASA bio-Optical Marine Algorithm Data set [21].
nFLH normalized fluorescence height Algorithm [54].
OC Ocean Color
OC3 Chlorophyll-a concentration (µg¨L´1) derived using VIIRS and MODIS algorithm [39–41].
OCI Chlorophyll-a concentration (µg¨L´1) derived using VIIRS and MODIS algorithm [39].
RGCI Red Green chlorophyll-a Index
ε Estimate of the standard deviation of the error
N Number of points
µ Mean value
σ standard deviation

Appendix A

A1. NN Algorithm Background and Directions for Implementation for aph443 Retrieval

Note: The material in this Appendix is presented in a manner intended to help those readers
less familiar with the use of Neural Networks. In the interest of completeness, some of the material
presented here repeats parts of Section 2 above.

A.1.1. Background

In the work presented, we applied a synthetically trained NN algorithm previously developed and
reported by us [12–15] to solve the inverse problem [19,20] of retrieving physical variables, including
aph443 from, VIIRS observations of Rrs 486, 551 and 671 nm in the WFS. A background summary is
given here.

The essence of the approach is the use of a standard multiband NN inversion algorithm that takes
VIIRS Rrs measurements at the 486, 551 and 671 nm bands as inputs, and produces as output the
related Inherent Optical Properties (IOPs), namely: absorption coefficients of phytoplankton (aph443)
dissolved organic matter (ag) and non-algal particulates (adm) as well as the particulate backscatter
coefficient, (bbp) all at 443 nm. (As discussed in Section 2 above, it is only with the NN output of aph443

that we are concerned with here).
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A.1.2. Synthetic Dataset

For development of the algorithm, available measurement data from the NASA bio-Optical
Marine Algorithm Data set [21], (NOMAD) was used as a basis for establishing a range of possible
IOP parameters and examining potential relationships between them. The full range of parameters,
applicable to oceanic and coastal waters, and the relationships established between them were used
as inputs to a bio-optical model [14,22,23]. This model, Figure 1a, with four components: water,
phytoplankton, colored dissolved organic matter (CDOM) and non-algal particulates (NAP) as inputs,
was constructed to create a synthetic database consisting of 20,000 IOP combinations covering the
entire observable range of IOP parameters. These IOPs were then used with a HydroLight based [36],
parameterized forward model described in Lee et al., 2002 [23], to generate corresponding sets of Rrs
values at 486, 551 and 671 nm for VIIRS, and at 488, 555 and 667 nm for MODIS-A, associated with each
of the 20,000 IOPs (and the related different combinations of the four components) [12–15]. The range
and variability of IOPs used in our bio-optical modeling is well represented in the literature [22–35]
and covers both case 1 and case 2 waters.

A.1.3. NN Training

50% (10,000) of these sets of Rrs and related IOPs were then used [12–15], to train a VIIRS NN.
Figure 1b, to model the relationship between input Rrs values at the 486, 551 and 671 nm bands
for VIIRS and the related IOPs aph, ag, ad, bbp coefficients, all at 443 nm, which is at the peak of
phytoplankton absorption spectrum, and thus exhibits most variation in natural waters, (and where
ag and ad are mutually constrained through an empirically derived relationship based on a study of
NOMAD values) [12–15,21]. Figure 1b shows the VIIRS NN Architecture used. It is a one-hidden-layer
multilayer perceptron (MLP) with six neurons at the hidden layer. Since this architecture was able
to model our problems well, we did not further explore how this relationship might be improved by
increasing the number of neurons or layers.

A back propagation learning procedure among a statistically representative synthetic dataset,
based on NOMAD parameters for off shore and coastal waters was used to retrieve aph443 given
the measured Rrs values at three VIIRS bands 486, 551 and 671 nm. By suitable training, the back
propagation learning procedure estimates the underlying complex relationships between the inputs
and outputs by retrieving the NN weighting parameters and biases using standard minimization
procedures on the residual output errors [64–69].

A.1.4. Testing the NN

The VIIRS NN algorithm was tested and evaluated using several statistical indicators. This was
done initially on half the simulated data-set not used in the training, then on field data from the
NOMAD. Finally, it was also tested on data from our own field campaign in the Chesapeake Bay
during 2013, which represented well the typical range of water optical properties and chlorophyll-a
concentrations in coastal regions. Shown below are the retrievals that were obtained against our in situ
field measurements.

Figure A1,2 show the values retrieved using the VIIRS NN algorithm with in situ radiometer field
measurements [14], of Rrs at 486, 551 and 671 nm, plotted against the values of aph443 m´1 (A1), and
bbp(443) m´1 (A2) measured by in situ WETLabs instrumentation [70]. These showed reasonably good
correlations and demonstrated the potential efficacy of the VIIRS NN retrievals from in situ measured
Rrs values that are not impacted by atmospheric and surface effects. It provided impetus for testing
NN applications for VIIRS HAB retrievals in the WFS, provided atmospheric corrections are adequate
to give correct VIIRS derived Rrs values at the 486, 551 and 671 nm bands.
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50% (10,000) of these sets of Rrs and related IOPs were then used [12–15], to train a VIIRS NN. 
Figure 1b, to model the relationship between input Rrs values at the 486, 551 and 671 nm bands for 
VIIRS and the related IOPs aph, ag, ad, bbp coefficients, all at 443 nm, which is at the peak of 
phytoplankton absorption spectrum, and thus exhibits most variation in natural waters, (and where 
ag and ad are mutually constrained through an empirically derived relationship based on a study of 
NOMAD values) [12–15,21]. Figure 1b shows the VIIRS NN Architecture used. It is a one-hidden-
layer multilayer perceptron (MLP) with six neurons at the hidden layer. Since this architecture was 
able to model our problems well, we did not further explore how this relationship might be improved 
by increasing the number of neurons or layers. 

A back propagation learning procedure among a statistically representative synthetic dataset, 
based on NOMAD parameters for off shore and coastal waters was used to retrieve aph443 given the 
measured Rrs values at three VIIRS bands 486, 551 and 671 nm. By suitable training, the back 
propagation learning procedure estimates the underlying complex relationships between the inputs 
and outputs by retrieving the NN weighting parameters and biases using standard minimization 
procedures on the residual output errors [64–69]. 

A.1.4. Testing the NN 

The VIIRS NN algorithm was tested and evaluated using several statistical indicators. This was 
done initially on half the simulated data-set not used in the training, then on field data from the 
NOMAD. Finally, it was also tested on data from our own field campaign in the Chesapeake Bay 
during 2013, which represented well the typical range of water optical properties and chlorophyll-a 
concentrations in coastal regions. Shown below are the retrievals that were obtained against our  
in situ field measurements. 

Figure A1,2 show the values retrieved using the VIIRS NN algorithm with in situ radiometer 
field measurements [14], of Rrs at 486, 551 and 671 nm, plotted against the values of aph443 m−1 (A1), 
and bbp(443) m−1 (A2) measured by in situ WETLabs instrumentation [70]. These showed reasonably 
good correlations and demonstrated the potential efficacy of the VIIRS NN retrievals from in situ 
measured Rrs values that are not impacted by atmospheric and surface effects. It provided impetus 
for testing NN applications for VIIRS HAB retrievals in the WFS, provided atmospheric corrections 
are adequate to give correct VIIRS derived Rrs values at the 486, 551 and 671 nm bands. 

 
Figure A. (A1) Shows the retrieved aph443 VIIRS NN; (A2) Shows the retrieved bbp443 VIIRS NN. Figure A. (A1) Shows the retrieved aph443 VIIRS NN; (A2) Shows the retrieved bbp443 VIIRS NN.

A2. Retrieval of aph443 from Rrs486, 551 and 671 nm Using NN

This section describes the steps required for the NN algorithm implementation, to be used for
retrieving aph443 from Rrs 486, 551 and 671 nm. The related calculations can be performed using a
MATLAB script.

Data transformation and standardization: It should be noted that inputs of the NN were
normalized and transformed into the log domain and standardized [69] by subtracting the mean
and dividing by the standard deviation before the training stage. Therefore outputs need to be
denormalized in the retrieval stage to obtain meaningful results.

The following steps shows NN aph443 retrieval:

I Retrieval of NN aph443 in (m´1) units, is obtained by denormalizing the NN output to obtain
Equation (a1). below:

aph443 “ 10pσo âph443`uoq (a1)

where âph443 is the normalized phytoplankton absorption at 443 nm obtained by NN and carries
out the final weighted sum activity and biases associated with the NN output aph443 m´1 and
inputs Rrs486, Rrs551 and Rrs671 nm shown below in (Equation (a3)). The µo (λ) and σo (λ) are the
mean and standard deviation of the NN âph443 outputs respectively, obtained from the simulated
datasets, and shown in Table A1.

II Neural Network parameters needed for the above calculations:
The first step shown in (Equation (a2)) below, requires input reflectance’s Rrs (λ), expressed as
base 10 logarithm, standardized by removing, from each Rrs (λ), mean (µi(λ)) of input values, of
the simulated dataset, and then scaling the difference by the standard deviation (σi(λ)) of input
values, of the simulated dataset, as shown in Equation (a2). Table A1 shows the relevant mean
and standard deviation input (for each corresponding Rrs wavelength) and output values. (This
procedure is also applied as the NN is trained using normalized Rrs (λ) values, so that it is equally
sensitive to all inputs, avoiding conditioning problems).

Table A1. Mean and standard deviation of the NN trained Inputs and output.

log10(Rrs486) log10(Rrs551) log10(Rrs671) log10(aph443)

µi ´2.2513 ´2.4802 ´3.4322 µo ´1.5257
σi 0.1862 0.3456 0.5904 σo 1.2596
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The variable t, in the NN hyperbolic sigmoid activation function,
´

2
1`e´2t ´ 1

¯

is used to transfer
the weighted sum activity of each computational element (neuron), which carries out the final weighted
sum activity and biases associated with the trained NN input, is given by Equation (a2).

t “

»

—

—

—

—

—

—

—

–

´0.0026 0.7735 0.1217
0.6908 ´1.0168 ´0.3926
0.2805 0.4950 ´1.7261
´0.4861 1.3790 ´0.7815
´0.2008 0.4675 ´0.0311
´0.0940 ´0.0076 0.0165

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

˚

”

log10pRrspλ1qq´µipλ1q

σipλ1q
, log10pRrspλ2qq´µipλ2q

σipλ2q
, log10pRrspλ3qq´µipλ3q

σipλ3q

ı

`

»

—

—

—

—

—

—

—

–

2.2272
´2.4660
2.4989
´0.5527
´0.2028
0.1321

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(a2)

âph443 is in turn related to t, by Equation (a3).

Λ
a ph443 “

»

—

—

—

–

0.1410 ´0.6780 ´0.4435 0.0682 0.6546 0.3814
´0.2470 ´0.8675 ´0.2453 0.0026 0.8058 0.6035
0.1087 0.2762 ´0.0687 ´0.9550 2.2780 0.6473
1.7204 ´0.0319 ´0.4128 ´01441 0.9679 ´1.2495

fi

ffi

ffi

ffi

fl

˚

´

2
1`e´2t ´ 1

¯

`

»

—

—

—

–

´0.2646
´0.2638
0.1398
´1.0195

fi

ffi

ffi

ffi

fl

(a3)

This will result in a specific value of âph443 for a set of Rrs486, Rrs551 and Rrs671 nm values.
This value along with µo (λ) and σo (λ) from Table A1 can now be used to complete evaluation of
aph443 m´1 Equation (a1).
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